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ABSTRACT 

The properties of BPS monopoles carrying nonabelian magnetic charges 
are investigated by following the behavior of the moduli space of solutions 
as the Higgs field is varied from a value giving a purely abelian symmetry 
breaking to one that leaves a nonabelian subgroup of the gauge symmetry 
unbroken. As the limit of nonabelian unbroken symmetry is reached, 
some of the fundamental abelian monopoles remain massive but acquire 
nonabelian magnetic charges. The BPS mass formula indicates that others 
should because massless in this limit. These do not correspond to distinct 
solitons, but instead are manifested as a “nonabelian cloud” surrounding 
the massive monopoles, with their position and phase degrees of freedom 
being transformed into parameters characterizing the cloud. 

1 Introduction 

Magnetic monopoles have long been the object of great interest. This is due in part to 
their role as predicted, but as yet undiscovered, particles in all grand unified theories. 
Beyond this, however, the monopoles of spontaneously broken gauge theories are of 
interest as examples of particles, arising from classical soliton solutions, that are in a 

sense complementary to the elementary quanta of the theory. It is particularly strik- 
ing that this soliton-quanta complementarity mirrors the magnetic-electric duality of 
Maxwell’s equations. This connection is made more concrete in the conjecture by 
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Montonen and Olive [l] that certain theories may possess an exact magnetic-electric 
duality that exchanges solitons with elementary quanta and weak with strong cou- 
pling. 

In this talk I will describe some research, done in collaboration with Kimyeong 
Lee and Piljin Yi [2], concerning monopoles that carry nonabelian magnetic charges; 
i.e., those whose long-range magnetic field transforms nontrivially under an unbroken 
nonabelian subgroup of the gauge symmetry of the theory. Just as the elementary 
quanta carrying nonabelian electric-type charges give rise to phenomena that are not 
seen with purely abelian charges, one might expect nonabelian magnetic charges to 
display interesting new features. Indeed, past investigations have discovered some 
curious properties associated with the long-range fields of such monopoles. For ex- 
ample, attempts to obtain chromodyons [3], objects with both electric and magnetic 
nonabelian charges, by applying time-dependent global gauge rotations are frustrated 
by topological obstructions [4] to the definition of such rotations in the presence of 
a nonabelian magnetic charge. Also, it has been shown [5] that the large-distance 
behavior of their Coulomb magnetic field can lead to instabilities in monopoles with 
more than a minimal nonabelian magnetic charge. New issues concerning these ob- 
jects are raised by the duality conjecture. One, with which I will be particularly 
concerned in this talk, is the nature of the objects that are the magnetic counter- 
parts of the massless nonabelian gauge bosons. Duality suggests that these should be 
massless, but it is not at all clear how one would obtain a zero energy soliton. 

As I will describe below, our strategy was to start with a theory whose gauge 
symmetry is spontaneously broken to a purely abelian subgroup, and then to follow 
the behavior of the classical monopole solutions as the asymptotic Higgs field is var- 
ied to one of the special values that correspond to a nonabelian unbroken symmetry. 
To avoid the pathologies associated with the long-range behavior of nonabelian mag- 
netic fields, we focused on systems, generally containing more than one monopole. 
whose total magnetic charge was purely abelian [6]. Throughout we worked in the 
Bogomolny-Prasad-Sommerfield (BPS) limit [7], with an adjoint representation Higgs 
field @. In addition, we made extensive use of the moduli space approximation [8], in 

which the low energy dynamics of interacting monopoles is reduced to that of a small 
number of collective coordinates. 

The remainder of this talk is organized as follows. In Sec. 2, I review some of 

the properties of monopole and multimonopole solutions with both SU(2) and larger 
gauge groups. The moduli space approximation is described in Sec. 3. In Sec. 4, 
I illustrate the behavior of monopoles as one goes from an abelian to a nonabelian 
unbroken symmetry, using an SO(5) example for which it is possible to carry out 
explicit calculations. The extension to other gauge groups is discussed in Sec. 6. 
Section 7 contains come concluding remarks. 



2 Multimonopole solutions with SU(2) and larger 

gauge groups 

For an SU(2) gauge theory whose symmetry is broken to U(1) by a triplet Higgs field 
a’, the asymptotic magnetic field is 

up = gii @a -- 
* 47rr2 I+1 

(1) 

with g quantized in integer multiples of 47-r/e. The BPS solution carrying a single 
unit of magnetic charge is spherically symmetric and can be written in the form [7] 

W = Fall(r) 

A4 = E,imfmA(r). 

where u is the asymptotic magnitude of the Higgs field and 

-4(r) = sinl:‘eur - ; 
1 1 

H(r) = vcothevr - A. 
er (3) 

The BPS solutions with n > 1 units of magnetic charge are all naturally inter- 
preted as multimonopole solutions. Their energy is precisely n times the mass of the 
unit monopole, indicating that the attractive long-range force mediated by the Higgs 
field (which is massless in the BPS limit) exactly cancels the Coulomb magnetic re- 
pulsion between static monopoles. Index theory methods show that after gauge fixing 
there are 4n linearly independent normalizable zero modes about any such solution 
[9]. Hence, the moduli space of solutions is parameterized by 4n variables, which can 
be taken to be three position coordinates and one U(1) phase for each of the compo- 
nent monopoles; allowing these parameters to vary with time endows the individual 
monopoles with linear momentum or electric charge. 

Now consider the case of an arbitrary gauge group G of rank r. Its generators can 
be chosen to be r commuting operators Hi that span the Cartan subalgebra, together 
with raising and lowering operators E a associated with the roots CX. The nature of 
the symmetry breaking is determined by the Higgs field. Its asymptotic value as in 
some fixed direction can be chosen to lie in the Cartan subalgebra, thus defining a 
vector h by 

ao=h.H. (4) 

Maximal symmetry breaking (MSB), to the subgroup U(l)‘, occurs if h has nonzero 
inner products with all of the root vectors. If instead there are I; 2 1 root vectors 
orthogonal to h, then the sublattice formed by these is the root lattice for a rank 
k semisimple group Ii’ and there is a nonabelian unbroken symmetry (NW) K x 

U(l)? 
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Now recall that one can choose as a basis for the root lattice a set of T simple roots 
with the property that all other roots are linear combinations of these with integer 
coefficients all of the same sign. It turns out to be particularly convenient to choose 
the simple roots so that their inner products with h are all nonnegative. In the MSB 
case this uniquely determines the simple roots, which we denot’e by p,. In the NUS 
case we denote by yj the simple roots orthogonal to h (i.e., the simple roots of K) 
and write the remainder as p,. In this latter case the choice of simple roots is not 
unique; the various possibilities are related by the VVeyl group of K. 

The quantization conditions on the magnetic charge can now be easily written 
down. The asymptotic magnetic field must commute with @; hence, we can require 
that in the direction chosen to define $ it be of the form 

& = -I &g-H. (5) 

Topological arguments [lo] then imply that 

g=‘” 
e 

[ 
c %P: + 1 qjy 3 ’ 
a ; 1 (6) 

where 
a* = 55 

cY* 
(7) 

is the dual of the root cx. The integers n, are the topologically conserved charges. For 
a given solution they are uniquely determined and gauge-invariant, even though the 
corresponding 0, may not be. The qj are also integers, but are neither gauge-invariant 

nor conserved. 
Consider first the MSB case. The energy of any BPS solution is 

J/I = g . h = c 11, (yh. &) 
a 

while the number of normalizable zero modes (after gauge fixing) is [ll] 

p=dCn,. 

(8) 

(9) 

These results suggest that, in analogy with the SC:(2) case, all solutions might be 

viewed as composed of a number of fundamental monopoles, each with a single unit 
of topological charge? that have no internal degrees of freedom. In fact, these fun- 
damental monopole solutions are easily constructed. Any root CY defines an SC;(2) 
subgroup with generators 

t’(a) = &wa + &t) 

t*(a) = - &E, -E-a) 

t”(a) = a*.H. (10) 
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If Ag(r; ZJ) and P(r; U) give the SU(2) solution corresponding to a Higgs expectation 
value ZJ, then 

-4(r) = 2 AD; h - PJW,) 
s=l 

Q(r) = 2 W(r; he /3,)t”(P,) + (h - h. PZ; /3) . H (11) 
.9=1 

is the fundamental monopole corresponding to the root p,. It carries topological 
charge 

nb = dab (12) 

and has a mass 

nz, = 5h.p:. 
e 

(13) 

Finally, there are only four zero modes about this solution, three corresponding to 
spatial translations and one to global rotations by the U( 1) generated by p, OH. (The 
other T - 1 unbroken Cr(l) factors leave the solution invariant.) 

(a) (b) 

Figure 1: The root diagram of SU(3). With the Higgs vector h oriented as 
in (a) the gauge symmetry is broken to U(1) x U(l): while with the orientation 
in (b) the breaking is to SU(2) x U( 1). 

As a concrete example, consider the case of SU(3) broken to c’(1) x U( 1). With h 
as indicated in the root diagram of Fig. la, the the prescription described above gives 
the two simple roots labelled pi and p2. Each of these defines an embedding of the 
SU(2) unit monopole about which there are four normalizable zero modes. One could 
also use the root ,Bi + p2 to define an embedding of the SU(2) monopole. At first 
glance, one might interpret the resulting spherically symmetric solution as a third type 

of fundamental soliton. However, there are eight, rather than four, zero modes about 
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this solution, indicating that it is just a special case of an eight-parameter family of 

two-monopole solutions. Note, for later reference, that this symmetric superposition 
of two fundamental monopoles has a core radius that is smaller than that of either of 
its components. This can be understood by noting that the presence of one monopole 
changes the magnitude of the vector boson mass that determines the core radius of 
the other. 

Now let us turn to the iWS case, where an unbroken nonabelian symmetry sur- 
vives. The energy of a solution, given again by Eq. (8)? depends only on the n,? not 
on the Qi. For technical reasons associated with the presence of long-range nonabelian 
fields, the index theory methods used to count zero modes can only be used if the 
magnetic charge is purely abelian (i.e., if g . ri = 0 for all 7i); when these methods 
can be applied, Eq. (9) for the number of zero modes is replaced by [12] 

P=4 [Fna+Fqj], 

Our experience with the MSB case might lead us to expect that the NUS solutions 
would also have a simple interpretation in terms of fundamental objects without 
internal degrees of freedom. However, there are several difficulties with this. First, 
while Eq. (14) suggests that there should be a fundamental monopole for each of 
the simple roots, the mass formula implies that those corresponding to the ri should 
be massless, which is impossible for a classical soliton of this theory. Second, since 
some of the monopole solutions obtained from the /3, transform nontrivially under 
the unbroken nonabelian factor Ii’? one might have expected the corresponding n, to 
appear with a coefficient greater than 4 in Eq. (14). Finally. because the qj are not 
invariant, the number of component monopoles in a solution would depend on the 
choice of simple roots; a change of basis could even turn an apparently fundamental 
solution into a composite one. 

The NUS version of the SU(3) example referred to previously is shown in Fig. lb. 
With h as indicated, the unbroken subgroup is SU(2) x r/r(l). The simple roots 
can be chosen to he either the pair labelled p and 7 or the pair labelled p’ and 7’. 
As in the MSB case, a solution can be obtained by embedding the SU(2) monopole 
using the subgroup defined by p; a gauge-equivalent solution is obtained by using 
p’. Although the index methods fail, the normalizable zero modes about these two 
solutions can be found by direct solution of the differential equations. One finds 
that there are still only four such modes; the additional Sc’(2) modes that might 
have been expected are nonnormalizable. Finally, as indicated above, there is no 
monopole solution corresponding to 7; making the substit,ution p, + 7 in Eq. (11) 
gives simply the vacuum solution. 



3 The moduli space approximation 

The BPS multimonopole and multidyon solutions describe configurations whose com- 
ponent objects are all at rest relative to one another and all have the same ratio of 
electric to magnetic charges. One might expect that the solutions for objects with 

small relative velocities or arbitrary small electric charges? although not truly BPS, 
would in some sense be approximately BPS. This idea is formulated more precisely 
in the moduli space approximation [8]. Let us work in Aa = 0 gauge and adopt a 
notation where ip = A4 and 84 = 0. Now let AtPS(r, z) (a = 1,. . . ,4) denote a family 
of gauge-inequivalent static BPS solutions parameterized by n collective coordinates 
zj. The moduli space approximation consists of assuming that for any t the fields can 
be approximated by a configuration A,(r,t) that is gauge-equivalent to one of these 
BPS solutions; i.e., 

A,(r, t) = Cl-‘(r, t) At” (r, z(f)) U(r, t) - ic’-‘(r, t) &U(r, t) . (15) 

(There is a subtle point here. Because we are working in A0 = 0 gauge, only time- 
independent gauge transformations are at our disposal; this is why there are no time 
derivatives of U in Eq. (15). However, since the gauge transformation relating A, 
to Afps might be different at one time than at another: we have to allow U to be 
t-dependent. Thus, U(r,t) should be understood as a family of static gauge trans- 
formations parameterized by t.) Given this Ansatz, the time derivatives of the fields 
must be of the form 

A, = ij$f + Da(ijEj) E ij 6jA, (16) 

where the gauge transformation generated by ij Ej(r) arises from the time derivative 
of U. This gauge function is determined by Gauss’s law, 

0 = Da/i, = tj D,(SjAa) . (17) 

This equation that shows the 6j.4, are simply the background gauge zero modes about 
the BPS solution [13]. 

The A0 = 0 gauge Lagrangian is 

L = J [ d3r tr i$ + i&* + if’: + iDi@* 1 . (18) 

With the Ansatz (15), the contribution of the last two terms is simply the BPS energy 
and therefore independent of time. Using Eq. (16) to rewrite the first two terms, we 
obtain 

L = igij(Z) iiij + constant (19) 

where 

gij(Z) = J d3X tr (6iA, 6ja4,) . (20) 
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Thus, the dynamics of the fields has been reduced to that of a point particle in 
geodesic motion on an n-dimensional moduli space wit,11 metric Y;j(z). 

If the full family of solutions for a given magnetic charge is known, then it is a 
straightforward (at least in principle) matter to obtain a complete set of background 
gauge zero modes and then substitute into Eq. (20) to obtain the moduli space metric. 
In most cases, however, an explicit solution is not available. Nevertheless, it may still 
be possible to determine gij. For example, the isometries of the moduli space that are 
implied by the space-time and internal symmetries of the theory, together with the 
requirement that the space be hyperkahler (this can be shown to follow from the prop- 
erties of the BPS equations [14]) may be sufficient to uniquely determine the metric; 
this was the approach used by Atiyah and Hitchin to determine the two-monopole 
moduli space metric for the W(2) theory [14]. Another approach works for arbitrary 
magnetic charge, but only in the region of moduli space corresponding to widely sep- 
arated monopoles. Here one uses the fact that the long-range interactions between 
monopoles are well understood, and determines the metric by the requirement that 
the Lagrangian (19) reproduce these interactions [15]. 

In particular, the moduli space and its metric are known for all cases with only 
two fundamental monopoles when there is maximal symmetry breaking. If the funda- 
mental monopoles are of the same type, then the solutions are essentially embeddings 
of SU(2) solutions and the moduli space is the Atiyah-Hitchin manifold. If the funda- 
mental monopoles are distinct and correspond to orthogonal simple roots, then there 
are no interactions between the monopoles and the moduli space is simply a direct 
product of one-monopole moduli spaces. The final possibility is that the fundamental 
monopoles correspond to distinct simple roots p and 7 with a nonzero inner product 
X = -2p* . 7* > 0. As described by Kimyeong Lee in his talk at this conference 
[16], the moduli space for this case can be determined by a combination of the two 
methods described above. It is of the form [17] 

R’xMO 
M=R3x z (21) 

where the R3 factor corresponds to the center-of-mass position and the R’ to an 
overall U(1) phase angle ,y, while M 0, corresponding to the relative coordinates, is 
the Taub-NUT space with metric 

[dr*+r*(dO*+ * * sm Od&*)]+(~)’ (p + g)-’ (d$+cosBd~)*. 

(22) 
Here p is the reduced mass of the two fundamental monopoles, r: 19, and 4 are 
the relative spatial coordinates, and @ is a relative C’(1) phase. The division by 2 
indicates that there is an identification 

(09 = (>i+27r,$J+ 4n+f 
nip + nz7 

T) (23) 
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where m 
P 

and m7 are the masses of the two fundamental monopoles. 

In fact, one can generalize from this case to that of maximal symmetry breaking 
with an arbitrary number of distinct fundamental monopoles. In [18] we argued that 
for such moduli spaces the properties of the moduli space metric for widely separated 
monopoles suggested that it was in fact the exact metric over the whole moduli space. 
Since then, Murray and Chalmers [19] h ave offered proofs of this conjecture. 

4 Nonabelian unbroken symmetry: an SO(5) ex- 

ample 

As we have seen, generic values for the asymptotic Higgs field give maximal symmetry 
breaking, with a nonabelian unbroken symmetry emerging only for special values. 
This suggests that one might approach the latter case by studying the behavior of the 
MSB solutions as the Higgs field approaches one of these special values. However, the 
SU(3) example illustrated in Fig. 1 shows that this limit is not always straightforward. 
For example, while the ,f3i monopole of the MSB case seems to have a smooth limit 
(the /!I monopole) as the NUS case is approached, the same is not true of the & 
monopole, whose mass and core radius tend to zero and infinity, respectively, in this 
limit. Similarly, the transition from the eight-parameter family of MSB solutions 
with magnetic charge proportional to /3; + p; to the four-parameter p’ monopole is 
certainly not smooth. In all of these cases the difficulties seem to be associated with 
the large-distance behavior of the solutions, which is complicated by the presence of 
massless nonabelian gauge fields. This suggests that the NUS limit might be better 
behaved when the long-range magnetic fields are purely abelian; i.e.. for solutions 
such that the g . ri all vanish. In particular, the MSB expressions for the mass, 
Eq. (8), and for the dimension of the moduli space. Eq. (9), both remain valid in the 
NUS limit in such cases. 

The SO(5) gauge theory provides a very nice example with which to test this 
idea. With the choice of Higgs field indicated in Fig. 2b. the symmetry is broken to 
SU(2) x U(1). A ccording to Eq. (14)? the minimal purely abelian magnetic charge, 
given by eg/47r = p* + 7*, should have an eight-dimensional moduli space of solu- 
tions. It turns out that the full eight-parameter family of solutions, all of which are 
spherically symmetric. was explicitly found some time ago [20]. Given these solutions, 

it is a straightforward matter to find the moduli space metric from Eq. (20). The 
corresponding solutions for the maximally broken case (Fig. 2a) are composed of two 
fundamental monopoles. Although the explicit form of these solutions is not known: 
we do know their moduli space and its metric; these were given above in Eqs. (21-B). 

Thus, we can check by explicit calculation whether or not the NUS moduli space is 
indeed the expected limit of that for the MSB case. 

9 



a 

P 

\ 

/ 

h Ah 

a 

P P v 

\ 

Y Y 

64 (b) 

Figure 2: The root diagram of SO(S). With the Higgs vector h oriented as 
in (a) the gauge symmetry is broken to U( 1) x U(l), while with the orientation 
in (b) the breaking is to SU(2) x U(1). 

Let us begin with the NUS solutions. Three of the eight parameters entering 
these specify the position of the center of mass, while four others are obtained by 
applying global SU(2) x U(1) transformations to a solution. The eighth parameter is 
not related to a symmetry. To see its significance we must examine the solutions in 
detail. First, we need some notation. Any element of I’ of the Lie algebra of SO(5) 
can be expressed in terms of two vectors P(1) and P(2) and a 2 x 2 matrix P(3) by 

P = P(1) . t(a) + P(2) . t(y) + tr Pc3jM, (24) 

where t(a) and t(y) are defined as in Eq. (10) and 

kf = 2 

d 

EP 
-E-p 

p* EP ) E-p ’ 
(25) 

The components of P(1) are singlets under the unbroken SU(2), while P(2) and I’(3) 
transform as a triplet and a pair of doublets. 

With this notation, the family of solutions found in [20] can be written as 

AT(I) = E,~~?~A(T) @l, = i,H(r) 

42, = E,;,~&(F, u) % = f,G(r,u) 

43) = TjF(l-,a) c&3) = -ifF(r,u) . (26) 

where A(r) and H(r) are the SU(2) monopole functions given in Eq. (3) and 

F(F,U) = 
ficoslY(ezlr/2) L(F’ u)1’2 

G(r, u) = A(r)L(r? u) (27) 
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with 
L(r, a) = [l + (T/CL) coth(ezlr/2)]-’ (28) 

and v = h. (Y. 
The parameter a in these solutions has the dimensions of length and can take 

on any positive real value. It enters only in the doublet and triplet components of 
fields. Its effect on the triplet components, proportional to G(r, a), is particularly 
striking. For l/ev 5 T 5 a, these fall as l/r, yielding the Coulomb magnetic field 
appropriate to a nonahelian magnetic charge. However, for larger distances the vector 
potential falls as l/r2, showing that the magnetic charge is actually purely abelian. 
One might describe these solutions as being composed of a monopole core of radius 
N l/ev surrounded by a “nonabelian cloud” of radius m a. 

Given these solutions, we can now obtain the moduli space metric. From symmetry 
considerations alone, we see that the metric must be of the form 

ds2 = B(a)dx2 + C(u)dx2 + Il(a)du2 + 12(a)[cM2 + sin28 d42 + (d$ + cosB &$)2] 

- B(a)dx2 + C(u)dx2 + II (a)da2 + 12(u) dn; (29) 

where x is the center of mass position and x a U(1) phase angle, while the Euler 
angles 6, 4, and $J correspond to the standard mapping of SU(2) onto a three-sphere. 
The BPS dyon mass formula relates B and C to the monopole mass M, and shows 
that they are both independent of a. The remaining metric functions, 11 and 12: can 
be determined from the zero modes using Eq. (20). Making the variation a. + u + 6u 
in Eqs. (26) yields a zero mode that is already in background gauge and so can be 
directly substituted into Ey. (20) to give y,, = 11 = 4n/e’y2u. To obtain the SU(2) 
zero modes, we exploit the fact that the BPS zero mode equations can be recast in 
the form of a Dirac equation for $(x) = 164(x) + iajbAj(X) [21]. Multiplication of 
any solution $ on the right by a 2 x 2 unitary matrix yields a new solution $’ that can 
be transformed back to give a new BPS zero mode, already in background gauge. In 
particular, if $, is the Dirac solution obtained from the 6u zero mode, then $,(ZI. 0) 
yields a zero mode that corresponds to a gauge transformation with a gauge function 
of the form f( ) T fi. t(y). One finds that f(x) = l/ccl, implying that the mode 
corresponding to a shift 6u maps to an Sc’(2) rotation by an angle &L/U, which in 
turn implies that 12 = ~~11. The net result is that 

ds2 = h4dx2 + m 16T2dx2 + -& [F+udl):]. 

By making the change of variables p = 2&i, this can be recast in the form 

ds2 = Mdx2 + - 16a2dy’ + 
Me4 ’ 

-& [dp2+ $dr!;] . 

(30) 

The quantity in brackets is the metric for R4 written in polar coordinates (with the 
factor of l/4 arising from the normalization of the Euler angles). and so the moduli 
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space is the flat manifold 
M = R3 x S1 x R” (32) 

with the standard metric. (The second factor is S’ because of the periodicity of x.) 
The corresponding MSB moduli space was described in the previous section. The 

NUS case corresponds to the limit in which m7, and hence the reduced mass ,LL, both 
vanish. In this limit the identification (23) reduces to (x5 $) = (x + 2n, ti). The 
division by 2 thus acts only on the R’ factor, allowing us to write 

M = R3 x S’ x MO. (33) 

Furthermore, if we set p = 0 and use the fact that X = -2p’ .7* = 2/y2, the metric 
(22) for MO becomes 

ds; = & (dr2 + r2 di-2:) . (34) 

Comparing these results with Eqs. (30) and (32), we see that the NUS moduli space 
metric is indeed the nzy + 0 limit of that for the MSB case: provided that inter- 
monopole distance T is identified with the cloud radius a. 

Although the moduli space behaves smoothly as one case goes over into the other, 
there is a curious change in the interpretation of its coordinates. The intermonopole 
distance becomes the radius of the nonabelian cloud, while the angles specifying 
the relative spatial orientation of the the two monopoles combine with their relative 
U(1) phase to give the global SU(2) orientation of the solution. Thus, the degrees 
of freedom of the 7 monopole remain, but they are no longer attributable to an 
isolated object. Instead, they describe the properties of a cloud that surrounds the p 
monopole and cancels the nonabelian magnetic charge that the latter acquires in the 
NUS limit. 

We can see quite clearly how this comes about if we follow the behavior of a 
generic MSB solution as the NUS limit is approached. Thus: let us start with a two- 
monopole configuration in which the intermonopole distance T is much greater than 
the core radii Rp N (e2mp)-’ and Ry - (e2y) -’ of the two monopoles. We can 

then take the NUS limit by varying the asymptotic Higgs field so that nz-, + 0 while 

9 
remains fixed. If we had only a 7 monopole, its core would expand without limit 

as we did this. However, in the presence of the second monopole: the 7 core only 
expands until it reaches the P-monopole, at which point it begins to evolve into a 
spherical cloud whose size is set by the original intermonopole distance. The reduced 
radius of the 7-monopole in the presence of a nearby P-monopole can be understood 
in the same manner as that for the spherically symmetric superposition of a ,L?i and 
a p2 SU(3) monopole that was noted previously. 
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5 More complex examples 

In the SO(5) example we saw how the two-monopole MSB solutions evolved into 

spherically symmetric solutions with one massive and one massless monopole in the 
limit of nonabelian symmetry breaking. Because the exact NUS solutions were known, 
it was possible to verify explicitly that the NUS moduli space was the expected limit of 
that for the maximally broken case. I will now discuss some more complex examples. 

The first of these, with two massive monopoles in the NUS limit, arises in a theory 
with gauge group SU(4). Th e solutions are not spherically symmetric, even in the 
NUS limit, and so it not surprising that their explicit forms are not known. However, 
because we have the MSB moduli space metric, we check that it has the required 
isometries in the NUS limit. 

In this example the symmetry is broken to U(1) x SU(2) x U(l), with the SU(2) 
factor corresponding to the middle root of the Dynkin diagram in Fig. 3. (This 
corresponds to a Higgs field expectation value of the form ip = diag ($r, c$~, c$~, d3) 
with ~$1 > $9 > ~$3.) If 

g = ;(B; + 7* + pg. (35) 

then (1) g. 7 = 0, implying that the asymptotic magnetic field is purely abelian and 
that the moduli space should have a smooth NUS limit, and (2) there is only one 
fundamental monopole of each type, so the MSB moduli space is of the class for which 
the metric was given in [18]. Examination of this metric shows that for the generic 
MSB case it has an W(2) isometry corresponding to spatial rotations and a U(1)3 
isometry corresponding to the unbroken gauge symmetry. However, the generator of 
one of these U(1) factors combines with two other vector fields, both of which become 
Killing vectors in the NUS limit, to generate an SU(2), so that in the NUS limit the 
U(1)3 isometry is enlarged to the required U( 1) x SU(2) x U(1). 

Figure 3: The Dynkin diagram of W(4), with the labelling of the simple 
roots corresponding to symmetry breaking to U(1) x SU(2) x U(l). 

The moduli space has twelve dimensions. For the MSB case. a natural choice of 
coordinates is given by three position variables and one C’( 1) phase for each of the 
three monopoles. In the NUS limit, the cores of the pi and p2 monopoles remain finite 
and (assuming that they are not too close) distinct. Hence, the six position variables 
specifying their locations should continue to be good moduli space coordinates, as 
should their U(1) phases. The overall SU(2) orientation of the solution gives three 
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more coordinates. This leaves just one other variable which? with the SO(5) example 
in mind, we might expect to in some way characterize a nonabelian cloud surrounding 
the massive monopoles. 

We saw in the SO(5) example that the MSB intermonopole distance became 
in the NUS limit a natural choice for an SU(2)- invariant parameter describing the 
nonabelian cloud. A nice generalization of this occurs here. Let ri and ~2 be the 
distances from the 7 monopole to the pi and p2 monopoles, respectively. Their sum, 
a = r1 + ~2, (but not ~1 or ~2 separately) is left invariant by the vector fields that 
generate the SU(2) isometry and can be taken as the twelfth moduli space coordinate. 
Indeed, under the SU(2) transformations generated by these vector fields the orbit 
of the “position” of the 7 monopole is the ellipsoid ~1 + I-2 = u. 

This example can be generalized to the case of SU(N + 2) broken to U(1) x 
SU(N) x U(1). With the roots labelled as in Fig. 4, the magnetic charge 

~=8;+57;+&+, 
j=2 

is orthogonal to the yj’s that span the unbroken SU(X). Because there is only 
one fundamental monopole of each type, the MSB metric of [18] is again applicable. 
Examining this metric, one finds that there is a set of vector fields, generating a 
U(1) x SU(N) x U(1) lg b a e ra, that gives the required isometry in the NUS limit. 
The dimension of the moduli space is 4(N+ 1). As usual, the coordinates for maximal 
symmetry breaking can be taken to be three position and one U( 1) variable for each of 
the N + 1 fundamental monopoles. With the nonabelian breaking, the positions and 
U(1) phases of the two monopoles that remain massive give eight parameters. The 
action of the unbroken SU(N) g’ Ives additional parameters; because a generic solution 
is left invariant by a U(N-2) subgroup, there are only [dim SU(N)-dim U(N-2)] = 
4N - 5 of these. This leaves just one moduli space coordinate to be specified; an 
SU(N)-invariant choice for this is a = EN i rj, where the rj are the distances between 
fundamental monopoles whose corresponding simple roots are linked in the Dynkin 
diagram of Fig. 4. 

o-u--o- l l l -e--o 

P, Yl y2 YN-l P, 

Figure 4: The Dynkin diagram of SU( N + 2). with the labelling of the simple 
roots corresponding to symmetry breaking to U( 1) x SU(N) x U( 1). 

A purely abelian asymptotic field is also obtained if 

eg j=N-1 

- = w; + c (N -j)7j+l. 47r 
j=l 

(37) 
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In the NUS limit this corresponds to a family of solutions containing N massive 
and N(N - 2)/2 massless monopoles, with a moduli space of dimension 2N(N + 1). 

The positions and U(1) ph ases of the massive monopoles give 4N of the coordinates, 

while the overall SU(N) orientation gives N2 - 1 more. (The generic solution has 

no invariance subgroup.) This leaves (N - 1)2 parameters that describe the gauge- 
invariant properties of the nonabelian cloud, which evidently can have a much more 
complex structure than it did in the previous examples. 

The existence of two independent “color-neutral” magnetic charges for this sym- 
metry breaking (all others are linear combinations of these two) is easily understood. 
The massive monopoles corresponding to pi and p2 are objects that transform un- 
der the fundamental representations F and F of the unbroken group, respectively. 
The combinations given above correspond to the fact that one can obtain an SC(N) 
singlet either with an F and an F, or from N F’s. 

6 Concluding remarks 

In this talk I have shown how one can study monopoles with nonabelian magnetic 
charges by following the behavior of purely abelian monopoles as the asymptotic Higgs 
field is varied toward one of the special values that leaves an nonabelian subgroup 
of the gauge symmetry unbroken. In the limit of nonabelian breaking, some of the 
abelian monopoles remain massive, but acquire nonabelian components to their mag- 
netic charge. Others, whose mass tends to zero in this limit, evolve into a cloud that 
surrounds one or more massive monopoles and cancels their nonabelian magnetic 
charge. Although they cease to exist as distinct objects, their degrees of freedom 
survive as parameters describing this cloud. 

The analysis described here has been largely classical. The effects of quantum 
corrections remain to be investigated. One would want to see, for example, the 
effects of confinement on the nonabelian magnetic charges. It would also be desirable 
to go beyond the semiclassical approximation and make contact with the results of 
Seiberg and Witten [22]. 

Perhaps most intriguing are the issues related to the duality conjecture. The 
monopoles that become massless in the limit of nonabelian breaking are presumably 
the duals to the massless gauge bosons. A fuller understanding of these objects might 
well form the basis for an approach to nonabelian interactions complementary to that 
based on the perturbative gauge bosons. 

This work was supported in part by the U.S. Department of Energy. 

References 

[l] C. Montonen and D. Olive, Phys. Lett. 72B, 117 (1977). 

15 



[2] K. Lee, E.J. Weinberg, and P. Yi, hep-th/9605229, to appear in Phys. Rev. D. 

[3] A. Abouelsaood, Phys. Lett. 125B, 467 (1983); P. Nelson Phys. Rev. Lett. 50, 
939 (1983). 

[4] P. Nelson and A. Manohar, Phys. Rev. Lett. 50, 943 (1983); A. Balachandran, 
G. Marmo, M. Mukunda, J. Nilsson, E. Sudarshan and F. Zaccaria, Phys. Rev. 
Lett. 50, 1553 (1983). 

[5] R. Brandt and F. Neri, Nucl. Phys. B161, 253 (1979); S. Coleman: “The mag- 
netic monopole fifty years later”, in The Unity of the Fundamental Interactions, 

edited by A. Zichichi (Plenum, New York, 1983). 

[6] P. Nelson and S. Coleman, Nucl. Phys. B237, 1 (1984). 

[7] E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976); M.K. Prasad and C.M. 
Sommerfield, Phys. Rev. Lett. 35, 760 (1975); S. Coleman, S. Parke, A. Neveu, 

1977); F. Englert and 

and C.M. Sommerfield, Phys. Rev. D15, 544 (1977). 

[8] N.S. Manton, Phys. Lett. llOB, 54 (1982). 

[9] E.J. Weinberg, Phys. Rev. D20, 936 (1979). 

[lo] P. Goddard, J. Nuyts, and D. Olive, Nucl. Phys. B125, 1 ( 
P. Windey, Phys. Rev. D14, 2728 (1976). 

[ll] E.J. Weinberg, Nucl. Phys. B167, 500 (1980). 

[12] E.J. Weinberg, Nucl. Phys. B203, 445 (1982). 

[13] J.P. Gauntlett, Nucl. Phys. B411, 433 (1994). 

[14] M.F. Atiyah and N.J. Hitchin. The Geometry und Dynumics of Muynetic 
MonopoEes (Princeton University Press. Princeton. 1988): Phys. Lett. 107A. 

21 (1985); Phil. Trans. R. Sot. Lon. A315, 459 (1985) 

[15] N.S. Manton, Phys. Lett. 154B, 397 (1985): G.W. Gibbons and N.S. Manton, 
Phys. Lett. B356. 32 (1995). 

[16] K. Lee, hep-th/9608185. 

[17] K. Lee, E.J. Weinberg, and P. Yi, Phys. Lett. B376, 97 (1996); J.P. Gauntlett 
and D.A. Lowe, Nucl. Phys. B472! 194 (1996); S.,4. Connell, “The dynamics 
of the SU(3) charge (1,l) magnetic monopoles”, University of South Australia 
preprint. 

[18] K. Lee, E.J. Weinberg, and P. Yi, Phys. Rev. D54, 1633 (1996). 

16 



[19] M.K. Murray, hep-th/9605054; G. Chalmers, hep-th/9605182. 

[20] E.J. Weinberg, Phys. Lett. B119, 151 (1982). 

[21] L.S. Brown, R.D. Carlitz, and C. Lee, Phys. Rev. D16, 417 (1977). 

[22] N. Seiberg and E. Witten, Xucl. Phys. B426, 19 (1994); (E) B430, 485 (1994); 
ibid. B431, 484 (1994). 

17 



Disclaimer 

This report was prepared as an account of work sponsored b! an agency of the United States Government. 
Neither the United States Government nor any agent! thereoj nor any of their employees, makes an! 
\ttarranty, express or implied. or assumes any legal liabilie or responsibilie for the accuracy. completeness 
or usefulness of anJ information. apparatus, product or process disclosed. or represents that its use would 
not infringe privately owned rights. Reference herein to any specific commercial product, process or service 
by trade name, trademark, manufacturer or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation or favoring by the United States Government or any agency thereo$ The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof 

Distribution 

Approved for public release: further dissemination unlimited. 


